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Damped oscillator with quantum noise 

R F Streater 
Bedford College, Regent’s Park, London, NWl 4NS, England 

Received 24 September 1981, in final form 27 November 1981 

Abstract. We find the general form of positive-energy Gaussian noise so that a linear 
damped (Bose or Fermi) oscillator obeying a quantum Langevin equation should remain 
canonical for all time. We show that in a heat bath the system converges to a K M S  state 
as time !+Co.  

1. Introduction and summary 

An oscillator at time t = 0 can be described by the operators Qo = x and PO = -id/dx, 
acting on L2(R) .  An interaction between the oscillator and an external system, such 
as the heat bath, might be described, at least in principle, by a Hamiltonian H =  
wAo*Ao + ?,HI. Here, A0 = 2-”’(P0 - ioo) ,  yI is a positive parameter measuring the 
strength of the interaction and yIHI is the interaction of the oscillator with the external 
system; HI involves the dynamical variables of the external system as well as the 
oscillator, and will be an operator on L2(R)0I‘, where rl is the Hilbert space of the 
external system. If X is an oscillator observable, its expectation in an equilibrium 
state is then given by 

the trace being taken over L2(R)OT1. In practice, HI is not merely unknown; it 
involves the detailed interactions of millions of atoms. There have been many attempts 
to construct a description which avoids the details of HI and depends only on yI and 
the temperature, when the external system is a heat bath. One such method is to use 
the concept of quantum noise. This leads to a non-Hamiltonian description of the 
oscillator. The quantum noise is described by quantised fields q5(t), rr ( t ) ,  t 2 0 ,  acting 
on a Hilbert space r, often related to rl .  The noise acts as the driving term of the 
damped oscillator equations 

with initial conditions Q(0) = QoOZ, P(0)  = PoOZ. The solutions. O(t), P ( t )  are 
operators on L2(R)@r. For simplicity we have written q5(t) for ZOf4J:t! and d r )  for 
ZOrr(t), and we understand (1) to be the unsmeared forms of distribution equations. 
These equations are simple linear quantum analogues of Langevin equations. Or, 
one can motivate the choice of these equations, as described by Haken (1970) by 
showing that they follow from the full Hamiltonian equations by a series of plausible 
approximations. We shall simply take them as our starting point. 
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Various papers, surveyed by Haken (1970) show that the decay parameter y is 
proportional to yr; they also arrive at a formula for q5(t), r ( t )  in terms of the interaction. 
At this point, simplifying assumptions are made. Let us summarise the arguments 
motivating Senitzky (1960). If the noise, c$(t), r ( t )  is omitted, the system is exactly 
solvable, and the motion takes place entirely in the first factor, L 2 ( R )  of L2(R)Or. 
The solution then is 

(2) Ql( t )  = (Qo cos wr +Po sin w t )  e-"' 

[Ql(t), Pl ( t ) ]  = i e-2yr 

Pl( t )  = (-00 sin wt + Po'cos w t )  e-Y'. 

From this we see that the commutator decays away 

(3) 

and the model violates the uncertainty relations. Senitzky (1960) asked, can we choose 
(non-commuting) noise operators such that the canonical commutation relations hold 
for all time? He found an approximate solution to his question, if y << w ,  by choosing 
q 5 ( f )  to be the positive-energy part of white noise. Lax (1965) makes a different 
choice, namely the whole spectrum of quantum white noise, obeying 

(4) 

He found that by a suitable choice of A he could exactly compensate for the decay 
(3) by the term coming from the noise. He obtained a relation between y and A ,  a 
quantum 'fluctuation dissipation theorem'. Since Lax needs the full range of energies, 
-CO < k <CO, to construct quantum white noise, he introduces negative-energy states 
into the theory. The model is therefore deficient, as noted by Kubo (1969) and Haken 
(1970). A simple consequence of the negative-energy states is that the 'equilibrium- 
state' at f = 00 fails to satisfy the KMS condition, as we shall see. As explained by Kubo 
(1957), Martin and Schwinger (1959) and Haag et al (1967), the KMS condition is 
satisfied by any realistic theory of equilibrium states as a consequence of the positive- 
energy axiom. 

In this paper we show that there is a choice of q5(t), r ( t )  without negative-energy 
states which also solves the commutator problem exactly. We find (0 2) the complete 
set of models of this type; each model is defined by a function ~ ( k ) ,  defined for 
0 s k s w, satisfying 0 s ~ ( k )  s 2y/7r. We show in 0 3 that if the noise is in a Gibbs 
state, then as t + CO the r'nodels converge to a KMS state at the same temperature. The 
equilibrium state exhibits line broadening of width y and is determined by p and d k ) .  

The theory is extended to fermions and to spins (04)  and to systems with 
asymmetric damping (0  5 ) .  

[q5(t), r ( f ' ) ]  = iAS(t - f ' ) .  

2. The quantum fluctuation4issipation theorem 

Let A( t )  =2- ' /2(P(t)- iQ(t))  and a( t )=2-"2(7r ( t ) - i~( t ) ) .  Then equation (1) 
separates into 

and its Hermitian conjugate. The solution to this, subject to A(0) = A", is 
r '  

A(t)  = exp((-iw - y)t)A,+ ds exp[(-io - y ) ( t  - s ) ] a ( s ) .  
JO 
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In this paper we assume that a ( t )  has a Fourier decomposition 

a ( t ) =  p(k)e-ikra(k)dk 

where a ( k ) ,  k L 0 are oscillators, so that 
JOm 

[ a ( k ) ,  a* (k ' ) ]  = S(k - k'). (7) 

We take p to be non-negative. The choice of k = 0 as the lower limit of the energy 
integral in (6) expresses the need not to add quanta of negative energy to A * .  

The problem is to find the most general p such that [A(t) ,  A * ( t ) ]  = 1 for all t 3 0. 
We note that [Ao, A t ]  = 1 and using (3, (6) and (7) we obtain 

1 = [ A @ ) ,  A * ( t ) l  

- iks + (iw - y ) ( t  - s') + iks'] 

so 

1 = e-2yr( 1 + Iom p2G dk{(e2"' + 1 --eyr cos[(@ - k ) t ] } )  

where G ( k )  = [ y 2  + (w - k)']-'.  Comparing as t + 00 gives 

dkp2(k)G(k) = 1. 

We see from (8) and (9) that for all t L 0, 

1 +ezyr + 1 -2eyr dk p2G cos[(w - k ) t ]  = exp(2yt). Jom 
Therefore we seek the most general solution of the integral equation for p ( k )  

J dk p 2 ( k )  cos[(o - k ) t ] [ y 2 +  (w - k)2]-' = exp(-yt) t 3 0 .  
0 

Hence 
m 

dkp2(k+w) cos(kt)(y2+k2)-l =e-'' I, 
This gives the cosine transform 

Iom c ik [pz (k  + w )  + pz( -k  + w ) l ( y 2 +  kz)-' cos(kr) = e-'' t 3 O .  

A simple contour integral shows 

Since a cosine transform has a unique inverse, we must have 
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If p ( k )  could be non-zero for k CO, a possible solution would be 

p ( k )  = Y/.rr for all k E R. 

This is essentially the choice of Lax (1965). But since we seek solutions with positive 
energy, we impose the condition p ( k )  = 0, k < 0. We now see immediately that the 
most general solution to the commutator problem is described as follows: let u ( k ) ,  
0 ZS k ZS w be any measurable function satisfying 0 S u ( k )  6 2 y/.rr. Then p ( k )  is deter- 
mined by 

We see that the noise depends on the system, in that w appears in (11). We should 
therefore regard d ( t ) ,  r(t) as the influence of the noise on the system, rather than 
as heat-bath variables as such. We shall see ( 0 3 )  that a ( k )  is determined by the 
lineshape in equilibrium, in the energy range 0 zs k s W .  

Whatever the choice of a ( k ) ,  the noise is not local in time; thus [ d ( t ) ,  .rr(t')]# 
ia(r-l') and even the field does not commute with itself at different times. This 
contrasts with the very simple properties of the Lax model, in which the noise is time 
local and strongly Markovian. 

The solutions (Q( t ) ,  P ( t ) ) ,  operators in L2(R)Or for each time, are not really 
time-displacement invariant. For, the initial choice Q(0) = Qo, P(0) =PO, commute 
with all future noise; but the solution Q(to), P( tO) ,  t O > O  does not commute with all 
noise future to to. In this sense, the initial choice, (Qo, Po) was the wrong choice of 
canonical pair for the Hamiltonian oA$AO+ yIHI, being the correct one for wA$Ao. 
The solution, then, corresponds rather better to the time-dependent Hamiltonian 
w A ~ A ~ ) +  e(r )yIH, ,  where 8 is the Heaviside function. The complicated time depen- 
dence of (Q(t) ,  P ( t ) )  describes the system's attempt to adjust to the new Hamiltonian 
for t>0 .  Physically, it should describe an oscillator shot into a hot environment at 
t = 0. We now show that for a natural choice of state of the noise, the large-time 
limit of the theory exists and defines a stochastic process with an invariant state. 

3. The approach to equilibrium 

The advantage of insisting that [Q( t ) ,  P ( t ) ]  = i h  exactly for all time, rather than just 
approximately, is that these operators define a Weyl system at time t :  

W,(a,  P )  = exp i ( aQ( t )  + P P ( t ) )  a, p E R. 

These generate the canonical c* algebra, d,, of operators on L*(iW)@r. All the 
algebras d, are isomorphic, t 3 0, to do. The theory thus obeys the axioms of Accardi 
et ai (1981, see also Accardi 1981, Lewis 1981). Suppose r is spanned by vectors 
obtained by acting on a time invariant cyclic vector R by the noise operators d ( t ) ,  
r( t )  (smeared with suitable test functions). By 'time invariant' we mean that there 
is a unitary motion, Ut.(?) acting on r, such that 

Ur(t)d(s)UI-l ( t ) = d ( s + t )  u~(?).rr(S)U;'  ( t )  = T ( S  + t )  
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and 
U,(r)R= R. 

Let us now regard states as positive linear forms, rather than vectors. Then for each 
state 6, pure or not, on the initial Weyl system WO, we define a state 6, on WO by 

&(Wo(a, P ) ) = ( ; @ R ) ( w t ( a ,  P ) ) .  ( 1 2 )  

The motion, 6 +& through the state space of the abstract algebra do, is the time 
evolution predicted by our theory. 

We see from ( 5 )  that Wt(a, p )  factorises into the system Wl,(a ,  p )  coming from ( 2 )  

Wlr(a, P ) = e x p  i(aOltf)+PPl(t)) 
and a factor X I  coming from the noise. Thus 

& ( W O ( ~ ,  P))=;(wlr(a, p))Wxr(a,p)). 
According to ( 2 ) ,  G( Wl,(a ,  p ) )  converges to 1 as t-, CO, and the system forgets its 
initial state exponentially fast. To proceed, for example to prove that 6, converges 
as ( + C O ,  we make assumptions about the noise state R. Suppose that the noise is 
Gaussian, and that the oscillators a * ( k )  are all independent; then 

( 1 3 )  ( a * ( k ) a  (k'))fl = n (k)S(k - k') 

( a  ( k ) a  (k'))n = 0 

( ~ ( k ' ) a * ( k ) ) ~ =  ( n ( k ) + l ) S ( k  -k') 
with n S O .  Suppose also 

( 1 4 )  

which states that i2 is gauge invariant. Then the limit of the state &, given by ( 1 2 ) ,  
as t + 00, if it exists, will be Gaussian, and will therefore be determined by the two-point 
functions 

(A*(r)A(r + 7)) 

cc I + 7  

= j ( A ~ A o ) e x p ( - i w r - y r - 2 y t ) + d ,  dkn(k)p*(k)  [ 'ds  0 J 0 ds' 

x exp[(iw - y ) ( t  - s) + iks + (-iw - y ) ( t  + r -s') - iks']. 

As t + CO this converges to 
00 

(A%A,(r)) = dk n ( k ) p 2 ( k ) G ( k )  e-ik7. 
0 

Similarly, (A(t + r )A* ( t ) )  converges to 

( 1 5 )  

The KMS condition states that at a temperature 8 = p - '  we have 

( A ~ A ~ ( T  + i@)) = ( A ~ ( T ) A ~ ) .  ( 1 7 )  
It is here that the positive-energy condition k 2 0  comes in. It ensures that the integral 
in ( 1 5 )  converges exponentially and defines an analytic function in the strip {r  E C: 0 < 
Im 7 < @}, provided n ( k )  = (ePk - 1 I - l .  For if k 20 ,  the factor (ePk - 1 I - l  provides a 
convergence factor as k + CO which dominates etmTk if Im 7 < p. This choice of n ( k )  
also ensures that ( 1 7 )  holds. We also remark that ( 1 4 )  ensures that (A,A,(7))=0, 
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which obviously is an analytic function so the KMS condition is trivially true. Equations 
(13) and (14), with n ( k ) =  ( e o k - 1 ) - ’ ,  may be expressed by saying that 0 is a KMS 
state for the time evolution of the oscillators a* ( t ) ,  a ( ( ) .  

The limit (15) and (16) defines a process Po0(7), QOo(r) which form a canonical 
pair for each 7 E R. These operators act on a Hilbert space (not L2(R)Or) reconstructed 
from the quasi-free Wightman functions obtained from (15) and (16) according to the 
well known method (Wightman 1956). The requisite positivity conditions hold, as 
the functions (15) and (16) are limits of matrix elements of operators on L2(R)OT. 
The process they define is stationary, canonical, Gaussian and KMS, and is similar to 
those studied by Lewis and Thomas (1975), and called FKM processes, after Ford et 
a1 (1965). 

As y+O the limit process Am(7), A%(T) ,  converges to a free oscillator at tem- 
perature 8, for any smooth a. The limit process describes decaying canonical quantum 
systems for which the decay mechanism has always been present. At zero temperature, 
Qoo(7) is the non-relativistic analogue of the generalised free field, used by Matthews 
and Salam (1958,1959) to describe unstable elementary particles. Our theory supports 
their ideas and gives an extension to non-zero temperatures. It would be interesting 
to search for a temperature dependence in the decay curves of elementary particles, 
as predicted by the relativistic version of (15) and (16). This could answer the 
question, does the virtual quantised field that causes a decay take on the temperature 
of the surroundings? This would be detectable at temperatures of the order of 
magnitude as U,  which is the Q value of the decay. Thus the process 7rn + 2y should 
be influenced by the heat bath well below a million degrees K. At such temperatures 
we could test whether the pion is described by a canonical field. 

The process at t = 03, given by (15), (16) is parametrised by the temperature 1/P, 
the decay width y (which represents the strength of the interaction), and the function 
a(&) ,  which is all that is left of the details of HI .  The lineshape of the system, given 
by the Fourier transform of (15), is directly parametrised by a ( k ) .  

4. The fermion and spin models 

Consider creation and annihilation operators B* and B obeying anticommutation 
relations {B*, B } ,  = I, and consider the stochastic equation 

-- dB*(r)-i~B*(t)-yB*(r)+b*(t) 
dt 

subject to the condition B*(O) = B*; here 
m 

b*(t)  = p ( k ) b * ( k )  exp(ikt) dk 
n 

and the b * ( k )  are fermion operators obeying { b * ( k ) ,  b (k ’ ) }+  = S ( k  - k ’ ) .  The fermions 
are in a representation based on a quasi-free state 0 in a Hilbert space p. The 
operators B, B* act on C2, and the solution 

takes place in C’O?. Here as before we use the shorthand B* for B*OI and b*(s)  
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for Z@b*(s).  As usual, we require the canonical relations B*(r)B(t)+B(t)B*(t)  = Z 
for all r 2 0.  This leads to equation (8) for p and to its solution equation ( 1  1 ) .  This 
would model a two-level atom, C 2  describing the two states, and w being the energy 
difference. For fermions we postulate the Gaussian state 

( b * ( k ) b ( k ' ) ) n =  n ( k ) S ( k  -k') (21 )  

and as before the limit state at t = CO is a KMS state if and only if 

n(k) = (epk + I)-'. (22 )  

The infinite-time state is then the quasi-free state with the two-point function 

m 

(BZB,(7)) = dk n ( k ) p 2 ( k ) G ( k )  exp(4k.r) 
0 

which defines a Hilbert space and operators B z ( t ) ,  t E R, by the Wightman reconstruc- 
tion theorem. The resulting process is stationary and KMS. 

The operators B(t ) ,  B*(t) can be used to build a model of the relaxation of a 
particle of spin in a magnetic field. To do this, define 

al ( t )  = B * ( t ) + B ( t )  c r 2 ( t )  =i(B*(t)-B(t))  a3(t) = 1 - 2 B * ( t ) B ( t ) .  (24 )  

The Hamiltonian H = -ha3 describes a spin in a magnetic field h in the third direction. 
This leads to the Fermi oscillator with w = 2h. In this model the spin is subject to 
anticommuting noise; this has the virtue that the spin-; relations 

(25 )  

hold identically at all times. This would not appear to be true for the model described 
by Agarwal (1974) .  Our model makes predictions about the lineshape and time 
behaviour of spin relaxation. Let us define the line density N ( k )  in equilibrium by 

2 
argl = E , I & u k  cr, = I  

a: 

(BZB,(r)) = I d k N ( k )  exp(-itk). 
0 

Then equation (1 1) requires that for 0 < x < w,  

(epcw-* '+ 1 ) N ( w  -x)+(e""'"'+ 1)N(w + X )  = ( 2 y / 7 r ) ( y 2 + x 2 ) - ' .  ( 2 6 )  

One shows that if N ( k )  is continuous and the left and right limits N ' ( w  - )  and 
" ( U + )  exist, then N ( k )  is differentiable at w and N ' ( w ) = O .  Then N ( k )  has a 
maximum at k = U ,  and there is no shift in the position of the line. From (26) if 
" ( U )  = 0 we obtain by differentiation 

~ " ( w  + ) + ~ " ( w  -1  = - 2 [ ( 2 y 2 + p 2 )  epw + 2 y 2 ] ( e P w  + ~ ) - ~ / ( y r )  

for all p. This is a good test of our theory, as a ( k )  has dropped out. Naturally, 
another good test is 

~ ( k )  = 2 y ( e 5 k  + I ) - ~ ( ~ ~ +  - k ) 2 ) - 1 / r  

for all p and all k > 2w. 
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5. Asymmetric damping 

Consider now the case where the interaction with the heat bath causes P(t) and Q(t)  
to undergo unequal damping: 

Let w ’  = ( w 2  - (yl  - 
real. The eigenvalues of the system are given by A : 

and take the case of undercritical damping, i.e. w ’  is 

I =A2+(yl+y2)A + ( y 1 y 2 + 0 ~ ) = 0 .  det ryl -U, - 
- ~ 2  - A 

- 
Thus A 1  =-(yl+y2)/2fiw’,  A ~ = A I .  Let A=[Q-(A2+yl)P/w]/iJ2. Then A * =  
-[Q - ( A  I + yl)p/w]/iJ2 and 

[A, A*] = i [ - i (Al  + yl)/w + i ( A 2  + yl)/w] = i ( A 2  -A1)/2w = w ‘ / w .  

Then 

dAldt  = [dQ/dt - ( A 2 +  y1)w-I d P / d t ] l i h  

= [UP- Y I Q  - ( A 2  + y~)(-wQ - y~P) /wl / i J2  

= [A2Q + ( w 2  + A2y2 + y1 y2)~/w]/iJZ. 

Now, w2+A2y2+y1y2= -Azy~-Az. Hence dA/dt =A2(Q-(A2+ y l ) P / w ) / i h =  
A2A. Hence also dA*/dt = A2A* = AIA*. 

In the corresponding stochastic equations we must add positive energy quanta to 
A*, so we try 

a3 

where a* ( r )  = jo dkp(k)a*(k)  exp(ikt). -- dA*-AIA*+a*(r)  
dt 

The solution is 

A*(t)=exp(AIt)A*+ ds exp[Al(r-s)]a*(s) 6‘ 
A(r) = exp(A2t)A + ds’ exp[A2(t -s)]a(s’). 

The commutator must be w ’ / w  for all 1. Thus 

w ’ / w  = [A(t) ,  A*(t)] 
m w ’ 

’U 0 
= - exp[ ( A  + A 2)t] + dk p 2 (  k ) exp[ ( A  + A 2)t]  

X {exp[(-Al + ik ) t ]  - 1}{exp[(-A2 - ik)t]- l} / [ ( -Al  +ik)(-A2 - ik)]  

= e x p ( - 2 y r ) ( $ + ~ ~ d k p 2 ( k ) { e 2 ” +  1 -2e” cos[r(w’-k)]}G(y, 0‘; k)) 

where 2 y  = -(A I  + A d =  Y I  +y2. 
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This leads to the same problem as in 0 2 ,  with w' replacing U in (8) and u ' / w  
replacing 1. We obtain the usual shift in the spectrum, as well as the broadening. It 
does not seem possible to make sense of stochastic equations that are critically or 
over critically damped. 
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